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Abstract

The paper presents an accurate and cost effective three-dimensional finite element model for the analysis and design of wound core, shell type,
power transformers, focusing on the short-circuit impedance evaluation. The model efficiency lies on the detailed representation of the transformer
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eometry along with the adoption of a particular reduced scalar potential formulation enabling three-dimensional magnetostatic problem solution
ithout prior source field calculation. Its accuracy is validated through local field measurements and through comparison of the calculated short-

ircuit impedance value with the measured one for several commercial wound core, shell type transformers. In such transformers, involving
xtensive winding parts out of the core window, the detailed representation of the transformer geometry, including the winding cooling ducts,
rovides accurate results for low densities of the three-dimensional finite element mesh, resulting to reduction of the required calculation time.
he model is used in the development of a computational tool, which enables the automated and accurate transformer characteristics prediction,
dopted to the manufacturing process. This tool has also been applied in the impedance calculation for different winding connections of dual voltage
ransformers, thus providing the information needed for the achievement of an accurate design and the enhancement of the manufacturer’s ability
o reduce design margins. The methodology presented in this paper has been incorporated in the design process of a transformer manufacturing
ndustry.

2005 Elsevier B.V. All rights reserved.
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. Introduction

In the light of 21st century energy market, where compe-
ition continues to accelerate in the electric industry, utilities
ill try to further improve system reliability and quality, while

imultaneously being cost effective. The transformer manufac-
uring industry must improve transformer efficiency and relia-
ility while reducing cost, since high quality, low cost products
ave become the key to survival [1,2]. Transformer efficiency
s improved by reducing load and no-load losses. Transformer
eliability is mainly improved by the accurate evaluation of
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chneider-electric.com (D.G. Paparigas).

the leakage field, the short-circuit impedance and the result-
ing forces on transformer windings under short-circuit, since
these enable to avoid mechanical damages and failures during
short-circuit tests and power system faults.

The transformer users specify a desired level of load losses,
no-load losses and short-circuit impedance (specified values).
It is within the transformer designer responsibilities to imple-
ment the transformer design so as the transformer to meet the
specified values at the lowest cost. The transformer is designed
so that its losses and short-circuit impedance (designed val-
ues) are very close to the specified ones, while a design mar-
gin is used since, in practice, transformer measured losses and
short-circuit impedance deviate from the designed ones due
to constructional and measurement tolerances. The transformer
manufacturer guarantees the values of losses and short-circuit
impedance (guaranteed values), while the permissible deviations
of the guaranteed values from the measured ones are specified
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by international standards [3] and the transformer manufacturers
are obliged to comply with them.

Accurate estimation of transformer losses and short-circuit
impedance during the transformer design phase is crucial, since,

(1) it increases transformer reliability and manufacturer credi-
bility;

(2) it secures the desired transformer efficiency;
(3) it reduces the material cost, since smaller design margin is

used;
(4) it decreases transformer delivery time, since there is no

need for transformer prototype (to confirm the accuracy of
transformer design) as well as for short-circuit tests under
nominal voltage (which are very laborious and expensive).

However, some of the existing design methodologies used
by manufacturers still rely on leakage field and short-circuit
impedance calculations that include gross approximations and
assumptions and incorporate empirical factors in the trans-
former magnetic field simulation. This approach is likely to
result into significant deviations from the measured short-circuit
impedance values, augmenting the risk of transformer failure
and overstepping of the respective guaranteed values. It is there-
fore necessary to develop improved methods of leakage field
evaluation, incorporable to the transformer design process. For
this purpose, research effort in this field focuses on the use of
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predict the examined characteristics. The present paper aims
to contribute to this direction, by introducing a detailed trans-
former 3D FEM model, able to give accurate leakage field results
for low mesh densities. In this model, which applies to sin-
gle and dual voltage power transformers, a particular reduced
scalar potential formulation is adopted, reducing significantly
the computational effort of the magnetic field sources calcula-
tion. This formulation, in conjunction with the detailed modeling
of the transformer windings, including the modeling of cooling
ducts, results to a computational tool, which allows the accurate
and fast prediction of the transformer short-circuit impedance.
Such a technique is particularly important for wound core, shell
type transformers representation, involving extensive winding
parts out of the core window. Comparisons between the results
of the proposed method and measured values are presented
for a number of commercial transformers, proving its validity
and accuracy. The model is also used in the development of a
computer code, which implements the short-circuit impedance
calculation for use in the transformer manufacturing industry
during the design process.

The paper is organized as follows: Section 2 describes the
developed FEM models for the transformer magnetic field anal-
ysis. A comparative presentation of their results on several trans-
former cases is given in Section 3 along with the presentation of
the computational tool based on the models and its application
to the impedance prediction for different winding arrangements
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dvanced power transformer modeling techniques that take into
ccount the constructional details of these devices.

Numerical modeling techniques consist some of the most
idely used tools for electrical machines analysis, as they have
roven their effectiveness in the representation of all their impor-
ant features. The finite element method (FEM) has been exten-
ively applied in the calculation of equivalent circuit parameters
f synchronous machines [4], as well as induction motors [5] and
enerators [6]. Special machines as permanent magnet [7,8] or
witched reluctance machines [9] have also been analyzed with
he use of this numerical method. Two-dimensional (2D) and
hree-dimensional (3D) FEM models are widely encountered in
he technical literature, for the calculation of transformer leak-
ge field [10], losses [11] and forces during short-circuit [12].
oreover, non-linear laminated iron characteristics have been

ppropriately represented [13,14] as well as power transformers
nteraction with non-linear loads has been simulated by using
oupling of field and circuits equations [15,16].

Accurate prediction of power transformer characteristics
equires, in general, 3D FEM models involving a large number
f unknowns and resulting frequently in laborious and expen-
ive numerical schemes. A possibility to reduce the number of
egrees of freedom is offered by adopting hybrid numerical tech-
iques [17]. However, this increases the model complexity, and
s rather advantageous in checking the transformer parameters
t the final design stage. At the preliminary design stages, it
s preferable to use a FEM model adopting some geometrical
implifications for the transformer geometry, enabling to reduce
ubstantially the number of unknowns. However, due to these
pproximations, significant deviations from test results are likely
o appear and model modifications may be needed to accurately
n dual voltage transformers. Finally, Section 4 concludes the
aper.

. Transformer modeling by a particular finite element
ormulation

.1. Field equations by using a particular reduced scalar
otential formulation

The finite element method is a numerical technique for the
olution of problems described by partial differential equations.
he governing equation in the case of a magnetostatic field is

he Laplace equation:

2Φm = 0 (1)

here Φm is the scalar magnetic potential. The considered field
s represented by a group of finite elements. The space dis-
retization is realized by triangles or tetrahedra if the problem
s two- or three-dimensional, respectively. Therefore, a contin-
ous physical problem is converted into a discrete problem of
nite elements with unknown field values in their vertices nodes.
he solution of such a problem reduces into a system of alge-
raic equations and the field values inside the elements can be
etrieved with the use of calculated values in their indices.

Many scalar potential formulations have been developed for
D magnetostatics, but they usually necessitate a prior source
eld calculation by using Biot–Savart’s law. This presents the
rawback of considerable computational effort.

In the present paper, a particular scalar potential formula-
ion has been developed, enabling the 3D magnetostatic field
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Fig. 1. Active part configuration of the three-phase wound core power trans-
former considered.

analysis. According to this method, the magnetic field strength
H is conveniently partitioned to a rotational and an irrotational
part as follows:

H = K − ∇Φ (2)

where Φ is a scalar potential extended all over the solution
domain, while K is a vector quantity (fictitious field distribu-
tion) that satisfies the following conditions [18]:

(1) K is limited in a simply connected subdomain comprising
the conductor;

(2) ∇ × K = J in the conductor and ∇ × K = 0 outside it;
(3) K is perpendicular on the subdomain boundary.

The above formulation satisfies Ampere’s law for an arbitrary
contour in the subdomain.

2.2. Representation of the transformer configuration

The transformer under consideration is a 630 kVA, rated
primary voltages 20 and 15 kV delta connected (dual primary
voltage 20–15 kV), rated secondary voltage 400 V star con-
nected, three-phase, wound core, oil-immersed, power trans-
former, shown in Fig. 1. The secondary winding comprises 16
layers (per phase) of copper sheet, while the primary consists
o
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Fig. 2. Perspective view of the transformer one-phase part modeled (simplified
winding geometry).

boundary condition ( ∂Φ
∂n

= 0) along yz-plane, xz-plane and the
three outer faces of the air box.

The use of this one-phase model instead of the whole three-
phase transformer model was conducted for the following rea-
sons:

(i) The smaller model size enables the construction of more
dense tetrahedral finite element mesh without great com-
putational cost (given that the exact representation of the
transformer magnetic field requires great accuracy which is
dependent on the mesh density and the total execution time
of the finite element calculations).

(ii) The representation of one phase of the active part does not
affect the accuracy of the equivalent circuit parameters cal-
culation.

The HV winding is divided into four subcoils. This division
models the winding arrangement that produces the second pri-
mary voltage level, shown in Fig. 3. The second one of the four
subcoils consists of two sections (HV2a and HV2b) with the
same number of turns. When these sections are connected in
parallel and then in series with the rest of the HV subcoils, the
lower voltage level (15 kV) is obtained. For the production of
the higher voltage rating, the two sections (HV2a and HV2b)
are connected in series and then in series with the rest of the
H

F
a

f 1385 turns (per phase) of insulated copper wire. The trans-
ormer magnetic circuit is of shell type and is assembled from
wo small and two large iron wound cores. Fig. 2 illustrates the
erspective view of the transformer one-phase part modeled.

The model of Fig. 2 comprises the low voltage (LV) and high
oltage (HV) windings of one phase, as well as the small and
arge iron core that surrounds them. An air box, whose dimen-
ions are equal to the transformer tank dimensions, surrounds
he active part, therefore confining the field calculation to this
omain. The xy-plane of the Cartesian coordinate system used
s the transformer symmetry plane, and the z-axis crosses the
ores symmetry plane. Due to the symmetries of the problem,
he solution domain is reduced to one-fourth of the device. These
ymmetries were taken into account by the imposition of Dirich-
et boundary condition (Φ = 0) along xy-plane and Neumann
V coils. Hence, in the case of the first primary voltage level

ig. 3. Winding arrangement (yz-plane) for the production of dual primary volt-
ge levels 20–15 kV.
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Fig. 4. Regions (xy-plane) of the subdomain used in the calculation of the
fictitious field distribution Kz corresponding to the LV winding (orthogonal
approximation of the winding corners).

(20 kV) the nominal current is considered to flow through all the
subcoils, while in the second one (15 kV), the current of subcoil
HV2 (whose sections HV2a and HV2b are connected in paral-
lel) is half of the current flowing through subcoils HV1, HV3
and HV4.

In the FEM model presented in the next sections, the mag-
netic non-linearity as well as the magnetic anisotropy of the iron
cores is ignored. This assumption is justified on the basis that
flux densities during short-circuit are very low, therefore con-
fining the transformer operation below the saturation region of
the magnetization curve.

2.3. Simplified modeling of the transformer windings

The representation of the magnetic field sources, i.e. the
windings current in the case of the transformer magnetic field, is
carried out with the use of a fictitious field distribution K, which
must satisfy the conditions described in Section 2.1. For the cal-
culation of K, a simply connected subdomain must be defined
for each winding, comprising its conductors. Fig. 4 shows the
bottom view of the subdomain corresponding to the LV winding
of Fig. 2. This subdomain is divided into four regions (�1, �2,
�3 and �4), in order to facilitate the calculation. The symbols
shown in Fig. 4 are described in the followings:

i

(

where NI are the ampere turns of LV winding.
The distribution K must be perpendicular to �1 boundary

(third condition described in Section 2.1). Therefore, it con-
sists of component Kz only, while Kx = Ky = 0. The second
condition described in Section 2.1 yields:

∇ × K = J ⇒ Kz = −
∫

�1

Jy dx

⇒ Kz = NI · Z · XW11MIN − X

XW11MIN − XW11MAX
(4)

(2) Region Ω2: In this region, Jx = Jz = 0 and

Jy = −NI · Z

XW1MAX − XW1MIN
(5)

while Kz derives from:

Kz = −
∫

�2

Jy dx = NI · Z · XW1MAX − X

XW1MAX − XW1MIN
(6)

(3) Region Ω3: In this region, Jy = Jz = 0 and

Jx = NI · Z

YW1MAX − YW1MIN
(7)

Therefore, Kz is given by:

Kz =
∫

Jx dy = NI · Z · YW1MAX − Y
(8)

(

T
r
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XW11MIN, XW11MAX: boundaries of the coil area along x-axis
inside the small core window;
XW1MIN, XW1MAX: boundaries of the coil area along x-axis
inside the large core window;
YW1MIN, YW1MAX: boundaries of the coil area along y-axis;
Jx, Jy: x, y components of winding current density;
XC: x-coordinate of the winding center.

The calculation of K is quite straightforward, given the wind-
ng dimensions along x-, y- and z-axes:

1) Region Ω1: In this region, Jx = Jz = 0. The current density Jy

is given by:

Jy = NI · Z

XW11MAX − XW11MIN
(3)
�3 YW1MAX − YW1MIN

4) Region Ω4: The application of continuity boundary condi-
tion for Kz between regions �3 and �4 yields:

Kz(Y = YW1MIN
−) = Kz(Y = YW1MIN

+)

⇒ Kz(Y = YW1MIN
−) = NI · Z (9)

he application of continuity boundary condition between
egions �1 and �4 or �2 and �4 results to the same equation
or Kz in region �4.

Consequently, the overall equation describing the fictitious
eld distribution corresponding to the LV winding is of the form:

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

NI · Z · XW11MIN − X

XW11MIN − XW11MAX
, region �1

NI · Z · XW1MAX − X

XW1MAX − XW1MIN
, region �2

NI · Z · YW1MAX − Y

YW1MAX − YW1MIN
, region �3

NI · Z, region �4

(10)

Fig. 5 gives the 3D graphical representation of Kz component
orresponding to LV winding. The symbol ZW1MAX appearing
n Fig. 5 denotes the boundary of the coil area along z-axis.
ig. 6 shows the Kz distribution along a plane parallel to y-axis,
rossing the center Xc of the winding.

The derivation of distribution K for the HV winding is sim-
lar, resulting to equation identical to (10), with the respective
oundaries of the winding along x-, y- and z-axes.

The representation of current sources through distribution K
as the advantage of being compatible with the discrete scheme
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Fig. 5. 3D graphical representation of the fictitious field distribution correspond-
ing to the LV winding of Fig. 2 (orthogonal approximation of the winding
corners).

of first-order tetrahedral elements so that it does not suffer from
cancellation errors, present in case of using Biot–Savart’s law
to determine source field distribution.

2.4. Detailed modeling of the transformer windings

The construction of the transformer model with detailed
winding geometry is realized in two steps: first, an elliptic
approximation of the winding corners is considered, while, after-
wards, the winding cooling ducts are inserted into the model.

The simplicity of the calculation of the fictitious field distribu-
tion presented in Section 2.3 relies on the orthogonal approxima-
tion of the winding corners. However, the real winding geometry
is the one shown in Fig. 1. The orthogonal approximation of the
winding corners, which are in fact curved, is likely to result to
significant overestimation of the current density and the deriving
magnetic field density, respectively.

For a more detailed representation of the winding geometry,
their corners were considered to be part of ellipses with known
center coordinates. Under this consideration, the fictitious field
distribution corresponding to the LV winding is the one shown
in Fig. 7.

The calculation of the Kz component shown in Fig. 7 is more
complicated: the subdomain comprising the LV winding has to
be divided into six regions, whose bottom view is shown in Fig. 8,
regions � , � , � and � (used in the calculation described
i

F
p

Fig. 7. 3D graphical representation of the fictitious field distribution correspond-
ing to the LV winding of Fig. 1 (elliptical approximation of the winding corners).

winding corners and are bounded by inner ellipses (ε2), (ε′
2) and

outer ellipses (ε1), (ε′
1).

In Fig. 8, point (Xo, Yo) is the center of (ε1) and (ε2) while
point (X′

o, Yo) is the center of (ε′
1) and (ε′

2). The coordinates
Xo, X

′
o and Yo derive from the transformer dimensions and can

be easily calculated. The equations of the ellipses are:

(ε1) :
(X − Xo)2 + (Y − Yo)2

(XW11MIN − Xo)2 + (YW1MAX − Yo)2 = 1 (11)

(ε2) :
(X − Xo)2 + (Y − Yo)2

(XW11MAX − Xo)2 + (YW1MIN − Yo)2 = 1 (12)

(ε′
1) :

(X − X′
o)2 + (Y − Yo)2

(XW1MAX − X′
o)2 + (YW1MAX − Yo)2 = 1 (13)

(ε′
2) :

(X − X′
o)2 + (Y − Yo)2

(XW1MIN − X′
o)2 + (YW1MIN − Yo)2 = 1 (14)

The equation describing Kz is of the form of (15). The ellipse
symbols appearing in (15) refer to the left hand side of (11)–(14),

F
fi
i

1 2 3 4
n Section 2.3) and regions �5 and �6, which correspond to the

ig. 6. Fictitious field distribution corresponding to the LV winding along the
lane X = Xc of Fig. 4.
ig. 8. Regions (xy-plane) of the subdomain used in the calculation of the
ctitious field distribution Kz corresponding to the LV winding (elliptical approx-

mation of the winding corners).
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Fig. 9. Perspective view of the active part of the transformer one phase part
modeled (detailed winding geometry).

an expression that was chosen for the sake of simplicity.

Kz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NI · Z · XW11MIN − X

XW11MIN − XW11MAX
, region �1

NI · Z · XW1MAX − X

XW1MAX − XW1MIN
, region �2

NI · Z · YW1MAX − Y

YW1MAX − YW1MIN
, region �3

NI · Z, region Ω4

NI · Z · (ε1) − 1

(ε1) − (ε2)
, region �5

NI · Z · (ε′
1) − 1

(ε′
1) − (ε′

2)
, region �6

(15)

Eq. (15) derived under the assumption that the current flows
through the whole area of the considered winding. This assump-
tion does not take into account the existence of cooling ducts in
the winding area outside the core windows, where the current
density is in fact equal to zero, because of the oil flowing through
them. This approximation consists another factor of the magnetic
field overestimation, as it increases the magnetic field sources
area. Therefore, the existence of cooling ducts must be inserted
into the analysis in order to obtain more reliable results.

Fig. 9 shows the perspective view of the transformer model
with detailed representation of the transformer windings, includ-
ing the cooling ducts. The modeling of ducts affects the cal-
c
c
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o
r
i
d
d

r
F
s

Fig. 10. Tetrahedral finite element mesh representing the transformer active part
(detailed winding geometry).

they are connected inside each winding area. In the case of the
LV winding, the four ducts are placed symmetrically in the cen-
ter of region �3, dividing the region into nine sub-regions: since
the width of each “duct” sub-region is equal to WDUCT, the width
of remaining five “winding” sub-regions is equal to the width of
the LV winding inside the core windows, divided to five (i.e. the
number of the “winding” sub-regions). Similarly, in the case of
the HV1 subcoil, the single existent duct is placed in the center
of the respective region �3, dividing the region into three sub-
regions: therefore, the width of the “duct” sub-region is equal to
WDUCT and the width of remaining two “winding” sub-regions
is equal to the width of the HV1 subcoil inside the core windows,
divided to two (i.e. the number of the “winding” sub-regions).
The definition of the coordinates of Fig. 12 may be used as a
general criterion for the definition of the winding area subdivi-
sion into sub-regions. In cases where the number of LV winding
ducts is not equal to four or the number of HV winding ducts is
not equal to one per subcoil, the geometrical parameters remain
the same, as long as an equivalent duct width WLV

DUCT, WHV
DUCT is

chosen for the LV and HV winding, respectively, according to
the following relationships:

WLV
DUCT = NLV

DUCT · WDUCT

4
(16)

W

w
d

w
a
w

(
“

ulation of the fictitious field distribution Kz as well as the
onstruction of the finite element mesh of the transformer active
art, shown in Fig. 10.

With respect to Fig. 8, the ducts are located in the region �3
f the winding; thus, the distribution must be recalculated in this
egion only. The new bottom view of both LV and HV windings
s shown in Fig. 11. The LV winding comprises four cooling
ucts while each one of the HV subcoils comprises one cooling
uct. All the ducts have the same thickness, equal to WDUCT.

The region �3 of the LV winding is divided into nine sub-
egions: five “winding” sub-regions and four “duct” sub-regions.
ig. 12 gives a detailed description of the coordinates of each
ub-region boundary coordinates (along xy-plane) and the way
HV
DUCT = NHV

DUCT · WDUCT (17)

here NHV
DUCT, NLV

DUCT are the number of LV and HV winding
ucts, respectively.

The distribution Kz of the region �3 corresponding to the LV
inding has the form of Fig. 13, which shows the Kz distribution

long a plane parallel to y-axis, crossing the center Xc of the
inding (similar to Fig. 6).
The equation of distribution Kz for region �3 of LV winding

Fig. 12) is given by (18). The first branch of (18) refers to the
winding” sub-regions, while the second branch refers to the
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Fig. 11. Division of the windings used in the representation of cooling ducts (xy-plane).

Fig. 12. Geometrical criteria for the windings area division in “ducts” and “winding” sub-regions (xy-plane). (a) LV winding and (b) HV subcoils.

Fig. 13. Fictitious field distribution corresponding to the LV winding along the
plane X = Xc of Fig. 11 (similar to Fig. 6 with consideration of cooling ducts).

“duct” sub-regions.

Kz

NI · Z
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1

5 · W1
[Y + YW1MIN + j · W1 + (j − 1)

·WDUCT] + |j − 5|
5

, j = 1, . . . , 5

|j − 5|
5

, j = 1, . . . , 4

(18)

where W1 is the width of each “winding” sub-region, given by:

W1 = LVWidth

5
(19)

where LVWidth is the width of the LV winding inside the core
windows.
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Similarly, the region �3 of the first HV subcoil is divided into
three sub-regions: two “winding” sub-regions and one “duct”
sub-region. The respective equation for Kz is:

Kz

NI · Z
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1

3 · W2
[Y + YW2MIN + j · W2 + (j − 1)·

WDUCT] + |j − 3|
3

, j = 1, . . . , 3

|j − 3|
3

, j = 1

(20)

where W2 is the width of each “winding” sub-region, given by:

W2 = HVWidth1

3
(21)

where HVWidth1 is the width of the first HV subcoil inside
the core windows.The first branch of (20) refers to “winding”
sub-regions, while the second one corresponds to the “duct”
sub-region. The form of the equations for Kz of the next three
HV subcoils are identical to (21) with the respective boundaries
along x-, y- and z-axes.

The construction of the mesh appearing in Fig. 10 can be
realized through a commercial tool for mesh construction. In
the considered transformer model, an initial 2D mesh was con-
structed, along the xy-plane of the model. Consequently, mesh
edges, including the subdivisions on the edges, were propa-
gated throughout the entire mesh in the sweep direction (i.e.
t
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u
w
t
t
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i
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o
o
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3

3

(
m
F
d

Fig. 14. Comparison of measured and computed field values along the line AB
during short-circuit at 20 kV.

in Fig. 10, in case of short-circuit with the high voltage wind-
ing connections corresponding to 20 and 15 kV voltage supply.
These figures illustrate the good correlation of the simulated
results with the local leakage field measured by Hall effect
probes.

3.2. Short-circuit impedance

The finite element method results were used to calculate the
transformer short-circuit impedance. Both models with simpli-
fied and detailed winding geometry were used.

The results were compared with the short-circuit impedance
measured after the transformer construction. Figs. 16 and 17
show the deviation of the calculated short-circuit impedance
from the measured one for different mesh densities of the two
models used in the case of the first (20 kV) and second (15 kV)
primary voltage level.

The results of Figs. 16 and 17 are tabulated in Tables 1 and 2.
The deviation appearing in these tables is defined by:

deviation (%) = |Ucalculated
k − Umeasured

k |
Umeasured

k

· 100% (22)

where Ucalculated
k is the short-circuit impedance calculated with

the use of the FEM model, while Umeasured
k is the measured short-

c

F
d

he transformer model height along z-axis). The meshing toler-
nce was less than 1% of the smallest edge length of the model,
n order to avoid mesh distortion problems. For the construc-
ion of the initial 3D mesh, first-order tetrahedral elements were
sed. Although the use of higher order elements was possible, it
as not implemented in the pre-processor, as they did not con-

ribute to the increase of the model accuracy, while they resulted
o greater computation time. As the construction of the initial

esh was crucial for the accuracy of the calculations conducted
y the finite element method, careful consideration was given on
ts density and homogeneity. Moreover, as the computation time
ncreases with the number of mesh nodes, the total mesh size
hould be confined below a number that guarantees a not exces-
ively time consuming solution model. For this purpose, meshes
f various densities were constructed, after refinement in areas
f special interest: that is why the nodes density in the mesh of
ig. 10 is greater in the windings area (especially in the winding
orners), in order to obtain greater accuracy in the magnetic field
ources region. The optimum number of elements was chosen
fter the comparison of the results in different transformer cases,
s it is described in the following section.

. Results and discussion

.1. Local field values

The field values computed by the proposed 3D FEM model
detailed winding geometry) have been compared to those
easured by a Hall effect probe during short-circuit test.
igs. 14 and 15 give the variation of the perpendicular flux
ensity component Bn along the line AB, positioned as shown
ircuit impedance value.

ig. 15. Comparison of measured and computed field values along the line AB
uring short-circuit at 15 kV.
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Fig. 16. Short-circuit impedance results (primary voltage 20 kV) for simplified
and detailed winding geometry.

Fig. 17. Short-circuit impedance results (primary voltage 15 kV) for simplified
and detailed winding geometry.

The comparison of the curves shown in Figs. 16 and 17 leads
to the following conclusions:

(1) The error in the calculation of the short-circuit impedance
with the use of the detailed winding geometry model begins

Table 1
Short-circuit impedance results for simplified winding geometry

Primary voltage
level (kV)

Number of
mesh nodes

Ucalculated
k

(%)
Umeasured

k
(%) Deviation (%)

20 2613 5.97 5.61 6.42
23696 5.95 6.06
31818 5.77 2.85
47044 5.73 2.14

100999 5.67 1.07

15 2613 5.82 5.50 5.82
23696 5.75 4.55
31818 5.63 2.36
47044 5.62 2.18

100999 5.57 1.27

Table 2
Short-circuit impedance results for detailed winding geometry

Primary voltage
level (kV)

Number of
mesh nodes

Ucalculated
k

(%)
Umeasured

k

(%)
Deviation (%)

20 3260 5.69 5.61 1.43
24862 5.77 2.85
32555 5.77 2.85
44660 5.80 3.39
99567 5.67 1.07

15 3260 5.56 5.50 1.09
24862 5.65 2.73
32555 5.63 2.36
44660 5.68 3.27
99567 5.57 1.27

from a very small value for a sparse mesh (instead of the
great error given by the simplified geometry model) and rises
with the increase of the number of mesh nodes. This may be
attributed to the fact that detailed geometry representation
by using small number of unknowns leads to some kind of
compensating errors for the source field representation.

(2) At an intermediate mesh density (30,000 nodes approxi-
mately) the error of the detailed model approaches the one
of the simplified model.

(3) The two models converge to the same error at high mesh
densities (beyond 90,000 nodes).

(4) The variation of the error is similar for the two high voltage
levels.

(5) The minimum deviation appearing in Tables 1 and 2 is less
than 1.5%, obtained with the use of detailed winding model,
for both first (lowest) and last (highest) mesh density and
with the use of the simplified winding model for the larger
number of nodes.

In order to validate the above conclusions, the same analysis
was conducted for two more cases of transformers of rated pri-
mary voltage 20 and 15 kV, rated secondary voltage 400 V and
rated power 400 and 1000 kVA. Figs. 18 and 19 give the respec-
tive error curves in the short-circuit impedance calculation, with
the use of the simplified and the detailed model, at 20 kV. The
shape of the error curves is similar to the one of Figs. 16 and 17,
a
f

a
i
i
m
f

3

t
a
S
i

s the greater accuracy is achieved in the lowest mesh density
or the detailed model in both cases.

The detailed model of the winding geometry is therefore
ppropriate for a very accurate calculation of the short-circuit
mpedance with the use of a sparse mesh. This ability is quite
mportant for the finite element method as it overcomes one of its

ain drawbacks, consisting in the computational time required
or obtaining reliable results.

.3. Generalization of results

The proposed methodology has proven to be cost effec-
ive and quite accurate in the prediction of the leakage field
nd the short-circuit impedance of the transformer examined in
ection 2. However, further work was necessary to enable its

mplementation in several three-phase dual voltage wound core
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Fig. 18. Short-circuit impedance results (primary voltage 20 kV) for the
1000 kVA transformer (simplified and detailed windings geometry).

transformers. The design of dual voltage transformers is of spe-
cial interest, as their windings are arranged in specific ways and
their characteristics may vary widely with the change in con-
nection, depending on winding arrangement [19]. Therefore,
accurate calculation techniques as the finite element analysis
for both connections must be conducted to ensure reliable per-
formance and to maintain design margins during short-circuit
and other transient phenomena [20].

For the above purpose, a computer code was developed, per-
forming the finite element calculations that provide the value
of the short-circuit impedance. A process of mesh parameter-
ization was adopted, which modifies the coordinates of initial
tetrahedral meshes of various densities in accordance with the
geometric data of the examined transformers. In this way, the
program user does not interfere with three-dimensional model
construction, a time-consuming procedure that demands specific
computer aided design knowledge. This interface has overbal-
anced another major deficiency that has so far restrained the
proliferation of the use of 3D FEM techniques in the transformer

F
4

Fig. 20. Structure of the computer code implemented for the calculation of the
transformer short-circuit impedance.

manufacturing industry. The structure of the computer program
is depicted in the flowchart of Fig. 20.

The main concept of the parameterization process relies on
the modification of dimensions of existing meshes (constructed
from an initial transformer model, which can derive through
an automated pre-processing commercial tool, as stated in Sec-
tion 2.4) according to the geometrical data of each considered
transformer. This is realized by alteration of the mesh nodal coor-
dinates with the use of equations deriving from the transformer
geometry.

For the simplification of the parameterisation process, the
initial meshes were divided into multiple regions. The division
was based on the dimensions affecting the nodes of each region:
thus, an effort was made to group neighboring nodes whose
coordinates depend on the variation of the same transformer
geometrical parameters into simply connected regions. This pro-
cedure resulted to 84 regions, whose perspective view is shown
in Fig. 21.

The initial meshes are integrated to the program input data
in the form of ASCII files. An identification number (ID) is
assigned to each node and element of the mesh, while the mate-
rial property of each element is represented by a number. This
method allows the program to identify the region where each
element belongs and the coordinates of its vertices with the use

F
t

ig. 19. Short-circuit impedance results (primary voltage 20 kV) for the
00 kVA transformer (simplified and detailed windings geometry).
ig. 21. Perspective view of the transformer model division to regions during
he mesh parameterization process.
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Fig. 22. Orthogonal mesh region.

of the ID values stored in the nodes and elements arrays during
the reading of input data. The vertices nodes of the elements
are stored in a Nelem × 4 array, where Nelem is the total num-
ber of mesh elements. The material of each element is stored in
a Nelem × 1 array. The material of each mesh region is repre-
sented by an integer k ∈ [1–84]. The parameterized mesh derives
from modification of the mesh nodal coordinates, described in
the followings.

Let us consider an orthogonal mesh region, shown in Fig. 22,
where (XP, YP, ZP) are the coordinates of a random point inside
the region, (a, b, c) are the dimensions of the region along x-,
y- and z-axes while (Xo, Yo, Zo) are the distances of the region
origin from the Cartesian coordinate system origin. A change
in the model dimensions will affect the dimensions (a, b, c) as
well as the distances (Xo, Yo, Zo). The new coordinates of point
P will derive from (23). In this equation, the superscripts “old”
refer to the old (initial) coordinates, while the superscripts “new”
refer to the new coordinates (after the change of the transformer
dimensions).

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xnew
P = anew

aold (Xold
P − Xold

o ) + Xnew
o

Ynew
P = bnew

bold (Yold
P − Yold

o ) + Ynew
o

Znew
P = cnew

cold (Zold
P − Zold

o ) + Znew
o

(23)

a
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t
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o

b
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e
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Fig. 23. Non-orthogonal mesh region.

less computational amount and less round off error. After the
solution of the FEM system of equations, the transformer short-
circuit impedance derives with the use of the resulting magnetic
energy of the model which is used to calculate the total windings
leakage inductance and the resulting inductive voltage drop.

The use of the detailed geometry model of the transformer,
described in Section 2.4 enables the representation of transform-
ers of different power ratings and voltage levels in the primary
winding. Single or dual primary voltage transformers can be
modeled. The windings connection (delta, star or zig-zag) does
not affect the model characteristics. The initial division of the
HV winding area into four sub-regions was selected in purpose,
as it can also model other possible winding arrangements for
dual primary voltage production, apart from the one described
in Fig. 3. Each HV winding arrangement is represented in the
model by assigning the appropriate current to each HV subcoil,
according to the examined primary voltage level. The calcula-
tion of the fictitious field distribution K corresponding to each
winding is then calculated as described in Section 2.4, taking
proper account of the number of LV and HV winding ducts.

An alternative way of obtaining dual primary voltage
20–15 kV is shown in Fig. 24. In this case, the two interme-
diate HV subcoils (HV2 and HV3) are connected in parallel
and then in series with the rest two subcoils (HV1 and HV4), in
order to obtain the second HV level (15 kV). Therefore, to model
this connection, one needs to consider that the current flowing
t
H

F
p

The procedure is similar for a non-orthogonal mesh region
nd the only difference relies on the fact that dimensions (a, b, c)
nd (Xo, Yo, Zo) are not constant and depend on the coordinates
f the examined point P. For example, in the region of Fig. 23,
he distance Xo is function of the y-coordinate of point P. In this
ase, Xo can be easily calculated with the use of the line equation
f the region edge, which derives from the region boundaries.

The magnetic scalar potential at each mesh node is calculated
y solution of the discretized form of the differential equation
overning the magnetostatic problem. The solution is imple-
ented in the developed FEM software solver with the use of an

fficient iterative algorithm (preconditioned conjugate gradient),
s it is more efficient in the aspect of less memory requirement,
hrough HV2 and HV3 is half of the current flowing through
V1 and HV4.

ig. 24. Alternative winding arrangement (yz-plane) for the production of dual
rimary voltage levels 20–15 kV.
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Table 3
Application of the proposed method to several transformer cases

Rating (kVA) Primary voltage level (kV) Ucalculated
k

(%) Umeasured
k

(%) Deviation (%)

1 1000 20 6.26 6.27 0.16
15 6.30 6.17 2.06

2 630 20 3.83 3.77 1.57
6.6 3.81 3.75 1.57

3 400 20 6.37 6.22 2.35
15 6.08 5.95 2.14

4 100 33 4.14 4.09 1.21

5 100 20 4.27 4.16 2.58
15 4.19 4.17 0.48

Fig. 25. Winding arrangement (yz-plane) for the production of dual primary
voltage levels 20–10 kV.

Fig. 25 illustrates a HV winding arrangement that gives
dual primary voltage 20–10 kV. In this case, the HV winding
is divided into two subcoils only (HV1 and HV2), which consist
of two sections (HV1a–HV1b and HV2a–HV2b), connected in
parallel for the production of the lower HV level (10 kV). Con-
sequently, at primary voltage level equal to 10 kV, subcoils HV1
and HV2 carry half of the nominal current. In order to model the
connection described above, the four HV winding sub-regions
of the FEM model of Fig. 9 are arranged as follows: the first
two sub-regions represent subcoil HV1, while the two last sub-
regions represent subcoil HV2.

In Fig. 26, an arrangement that produces dual primary voltage
level 20-6.6 kV is shown. This arrangement resembles to the one
of Fig. 25, besides the fact that HV1 and HV2 are divided into
three sections. Thus, at primary voltage level equal to 6.6 kV,
one third of the nominal current flows through HV1 and HV2.

Table 3 summarizes the results of the calculated short-circuit
impedance values in five cases along with the ones measured
after the transformers construction. The secondary voltage lev-
els of the transformers are equal to 400 V, except for transformer

F
v

Table 4
FEM solution times for different mesh densities

Number of mesh nodes Solution time (min) for Pentium 4,
2.4 GHz, 512 MB RAM

3260 1.5
23696 20
32555 35
55473 140
89603 190

4, whose nominal secondary voltage is equal to 433 V. The com-
puted results compare favorable with the measured values, as the
difference between them appears to be less than 2.5% in most
of the cases. The maximum deviation is equal to 2.64% while
the minimum one is less than 0.5%.

The calculations were conducted with the detailed trans-
former model and a sparse mesh of approximately 3500 nodes.
As the accuracy provided by a sparse mesh is equivalent to the
one of a mesh of several thousands of nodes, it can be used sys-
tematically in the short-circuit impedance evaluation. Table 4
compares the solution times required for different mesh densi-
ties in the case of an average performance personal computer.
The use of a coarse mesh density reduces the solution time to
a few minutes, enabling the employment of the method in an
automated transformer design process.

4. Conclusions

An efficient 3D FEM model of power transformers for the
leakage field and short-circuit impedance evaluation, suitable for
design office use, has been developed and applied in the trans-
former manufacturing industry. The detailed representation of
the transformer (focusing on the winding geometry and cool-
ing ducts) and the particular reduced scalar potential technique
adopted consist the main advantages of the model, with respect
t
m
e
t
m
w

ig. 26. Winding arrangement (yz-plane) for the production of dual primary
oltage levels 20–6.6 kV.
o standard FEM codes. It has been validated through local field
easurements and short-circuit impedance calculation in sev-

ral three-phase, wound core, single and dual voltage, power
ransformers. The computed results compared favorable to the

easured values and the mean deviation in the impedance value
as less than 3%. The method is very cost effective, as high
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accuracy is obtained for low mesh densities, requiring little com-
putational time. This ability, along with the development of an
automated, user-oriented, transformer short-circuit impedance
calculation program based on the FEM model overcome the
main deficiencies of the method and enable its use during the
preliminary design process.
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